

<u>Hall A – ECAL</u>

Brian Eng and Marc McMullen

- Disassembled test stand and removed the silicon heater from the supermodule to check condition
 - \star The silicon had no delamination and the supermodule was undamaged
- Wrote LabVIEW code to control the heater ramp rate
- Prototyping heaters using two 24-V, 70-W cartridge heaters in a 4" x 4" x 0.5" aluminum plate
 - ★ Ordered components
 - * Machined aluminum plate and installed two heaters and one thermistor
 - * Rewired test stand to use two channels to supply voltage (one for each heater)

<u>Hall A – GEp</u>

Mindy Leffel

• Terminated two high voltage, Fischer, 27-pin connectors

<u>Hall A – Møller</u>

Mary Ann Antonioli and Brian Eng

- Began Illustrator diagram for Phoebus screen for magnet #2 temperatures
 - The Phoebus diagram based on AutoCAD drawing coordinates has lines that don't line up correctly
- Installed trial version of Siemens PLC software suite TIA Portal v18 (Totally Integrated Automation); still no word on missing licenses ordered
- Siemens distributor updated parts delivery dates; some items have been changed to 2024
- Reviewed drafts of RTD drawings Kaiyi put on document control

<u>Hall A – SoLID</u>

Pablo Campero

• Completed requested changes to *Solenoid Cooldown* and *Solenoid Neck Temperatures* HMI screens

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2023-03-08

<u>Hall C – NPS</u>

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, Mindy Leffel, and Marc McMullen

- Ran Ansys Transient Thermal simulation of crystal array with dividers (carbon fiber and mu-metal) and copper cooling shell
 - ***** Q = 0.3 W
 - ***** Film coefficient: $5 \text{ W/m}^{2\circ}\text{C}$
 - ★ Ambient: 20–22°C
 - ★ Copper shell temp: 10°C
 - ★ Max temperature after 1E6 s (277.77 hrs): 16.378°C

- Continued developing Python script for Keysight extension cable testing
 - * Included a timestamp after each temperature and voltage measurement
 - ★ Wrote test procedure
- Wrote Python code to generate a new version of the VLD Control GUI
 - ★ Made a prototype screen to verify that Boolean widgets can access a single bit from a PV; can directly use PVs for channel masks to enable or disable channels
 - ★ Adding PVs
 - * Adding bleach mode and pulse mode settings and readback

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2023-03-08

	C CS-Studio (Phoebus)	
	Pulse Control X	
		100 %
		L'es a
	Square Pulse On Random Pulse On	
	Set Square Wave Width [0 1000]:10 ns Pulser Setting [0 15] 21 Hz	_
	Set Square Wave Amp [0,1000]: 49 Triager Source [0,2] Period	ic
Bleach Bleach Bleach Bleach E		
Pulse Pulse Pulse Pulse		

- Added channel status byte monitor to the high voltage channels pop-up screen
- Evaluating implementation of alarm arrays within the Phoebus test system EPICS • softIOC
- Terminated one 50-conductor, D-sub connector cable; 12 of 12 completed

Hall D – JEF

Mindy Leffel

Populated 120 PMT bases •

EIC

Brian Eng, Pablo Campero, and Marc McMullen

- Disassembled the thermal test stand
- Researched and ordered aerogel for insulating the thermal test stand •
- Ran thermal simulation for model with 5 mm of separation between beampipe and • silicon, with 1 mm and 0.5 mm of aerogel insulator and without insulator, and air flow through the annulus space and enclosure at 3 and 4 m/s
 - * Plotted results of silicon temperature vs velocity, with 1-mm thick aerogel and without

Completed 3D model of beampipe used in test stand

EIC-DIRC

•

Tyler Lemon and Marc McMullen

- Reviewed interlock schematic
- Compiled list of items to procure for laser test area
- Investigating circuit for photodiode readout and the use of an op-amp in a transimpedance amplifier
 - Designed 60" x 18" x 0.063" aluminum panels for optical table sidewalls
 * Panels will be machined and powder coated in matte black by vendor
- Simulated laser interlock circuit in Altium with circuit inputs replaced by programmable voltage sources
 - * Interlock status and latched status monitored using digital probes
 - ★ Results plotted on timing graph show where the inputs were toggled and the circuit's response

DSG Website

Peter Bonneau

• Revised the main <u>DSG website page</u> and added additional content